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ware, the methods apply to almost any geometries and nonlinear
heat conduction problems. If properly used, the methods are ac-
curate and powerful. However, these methods are expensive and
not readily available for many practical engineers.

Analytical solutions:For many workpieces of regular geom-
etry, analytical or approximate analytical solutions can be ob-
tained for linear problems, for example, infinite flat plates,
cylinders, and spheres. Some multidimensional geometries can
be treated by the method of separation of variables, and the so-
lutions of two- and three-dimensional transient heat conduction
problems can be obtained by a simple product superposition of
the solutions of certain one-dimensional problems. Generally,
these analytical solutions are also very complex and can only be
obtained by some numerical methods.

Heisler charts:Heisler (for example, Ref 1) first presented in
1947 the analytical solutions for the three most important geo-
metries in a graphical form. The three cases are (a) plates with
small thicknesses in relation to the other dimensions, (b) cylin-
ders where the diameter is small compared to the height, and
(c) spheres. Again, the solutions of two- and three-dimensional
transient heat conduction problems can be obtained by a simple
product superposition of the solutions of certain one-dimensional
problems. The methods are simple, but can be complex for three-
dimensional problems. The methods are generally not applicable
to arbitrary geometries.

It should be mentioned that the convective heat transfer be-
tween the workpiece and the surrounding air is a very difficult
problem to deal with for all three methods. Recently, Gao and
Reid[2] developed a simple and practical virtual sphere method
for estimating the equilibration times for heat treatment based on
the theory of heat conduction in solids. The two most important
components in this new approach are the virtual sphere concept
of representing any geometry and two new simple approximate
solutions for the center temperature of a solid sphere. The method
was evaluated against the exact solutions of some regular geo-
metries by Gao and Reid. However, no experimental evaluation
of the method was undertaken.

Keywords equilibration time, heat conduction, heating rate, heat
treatment

1. Introduction

In heat treatment, a workpiece is heated in a furnace for a
given time at a given temperature. The equilibration time is
defined as the time required for the workpiece to reach a uni-
form temperature distribution, equal to the air temperature in
the furnace. Equilibration times and heating/cooling rates are
two important operating parameters in the heat treatment of
metals.

In some cases, it is possible to measure the surface and core
temperatures to determine the equilibration time. However, this
is not always possible for a variety of reasons. Instead, it is com-
mon to use some simple rules of thumb to estimate the time re-
quired for a given section size by assuming that there is a linear
relationship between the equilibration time and the thickness. In
theory, the relationship between the equilibration time and thick-
ness is not always linear. In addition, the thickness is also diffi-
cult to define for a complex geometry. The rules of thumb are
simple to use, but each applies only to a specific material and is
inaccurate.

Most heat transfer situations in heat treatment are transient
heat conduction problems with convective and radiative bound-
ary conditions at the surfaces of the solid. In the theory of heat
conduction in solids, there are at least three methods that are
readily available for estimating the equilibration time. These are
summarized briefly as follows.

Numerical methods:These methods solve the basic govern-
ing equation of heat conduction. With available commercial soft-
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While a previous article by Gao and Reid[2] concentrated on
the theoretical aspects of the method, this article emphasizes
the practical aspects. The purposes of this article are basically
twofold: (1) examine and summarize the virtual sphere method
for determining equilibration times and heating/cooling rates
from an engineer’s point of view; and (2) evaluate the virtual
sphere method against both experimentally measured temper-
ature profiles in a heat treatment cycle and exact solutions for
some nonspherical geometries.

The practical methods for predicting equilibration times and
center temperatures will be summarized first. Advantages and
disadvantages of the methods will also be discussed, followed
by the physical background behind the methods. The test cases
will be presented next, and, finally, some conclusions will be
drawn.

2. Summary of the New Methods

2.1 Definition of the Heat Transfer Problem

A workpiece with arbitrary geometry has a volume of V (m3)
and a total heat transfer surface of area A (m2). The density,
specific heat, and thermal conductivity of the workpiece are ρ
(kg/m3), c (J/kg · °C), and k (W/m · °C), respectively. The over-
all heat transfer coefficient to the surface is h (W/m2 · °C). The
initial temperature of the workpiece is Ti (°C), and the furnace
temperature is T∞ (°C).

Two questions can be asked: What will be the center tem-
perature after a given time, tgiven? How long will it take for the
center temperature to reach a given temperature, Tgiven? The two
questions are related to each other. The first question is to de-
termine the heating/cooling rates, and the second question is to
determine the equilibration times. Once the center temperature
reaches the furnace temperature, T∞, then the system can be
considered to be at a uniform temperature. It should be men-
tioned that the center of a solid body can be defined easily for
a simple geometry, but can be very difficult to define for a com-
plex geometry. Thus, the problem of predicting equilibration
times can be divided into two subproblems, namely, how to de-
fine the center of the geometry and how to predict the center
temperature.

In many real situations, the volume and heat transfer area of
a workpiece can also be difficult to measure, but there are many
ways of overcoming this difficulty. Without going further with
some extensive listing, one simple method can be recommended
for some very complex geometries. For volume measurement, if
possible, a solid can be immersed into water, and the water vol-
ume of the solid displaced measured. For area measurement,
paper can be cut and attached onto the surface, weighing the
paper after collecting it from the solid. The weight of the paper
will give a satisfactory estimate of the surface area, provided a
standard size sheet of paper is weighed.

The overall heat transfer coefficients include the effects of
both convective heat transfer and radiative heat transfer. Accu-
rate prediction of the heat transfer coefficient is a difficult prob-
lem. Convective heat transfer of the workpiece surface is mainly
the result of the turbulent natural convection in most situations.
For simple geometries, determination of the average convective

heat transfer coefficient can be done by using available empiri-
cal relations found in many heat transfer textbooks,[1] but com-
plex surface shapes are not discussed. Reynoldson[3] provided
a list of overall heat transfer coefficients for different types of
furnaces, which is reproduced in Table 1. These values pro-
vide a good starting point for most practical metal heat treat-
ment situations.

It should be noted that the surface area in the input data is
only for those subareas where convective or radiative heat ex-
change occurs with the surrounding air or surfaces. Figure 1 il-
lustrates three ideal situations for a rectangular block with a
corner cavity, a surface cavity, and an interior cavity. An exter-
nal flow field is created over the block. For the corner cavity, the
three surfaces are exposed fully to the external air flow and con-
tribute to the surface heat transfer. Thus, these areas should be
included in the heat transfer area of the block workpiece. For the
interior cavity, the four surfaces do not contribute to the heat
transfer between the block and its surroundings. Their areas
should not be included in the heat transfer area calculation. In the
surface cavity, a flow recirculation can be created. If the flow re-
circulation is strong, then it will contribute significantly to the
surface convective heat transfer, and the cavity surfaces should
be included in the heat transfer area. If the cavity is relatively
deep and small, then the flow recirculation in the cavity may be
very weak (dead zone), and its surfaces will not contribute to the
total heat transfer area calculation. At the same time, such a deep
cavity may behave like a black hole.

In summary, there are nine input data for the present approach:

• the volume and heat transfer surface area of the workpiece;
• the overall heat transfer coefficient;
• the three physical properties of the workpiece, including the

density, the thermal conductivity, and the specific heat ca-
pacity; and

• the initial workpiece temperature, the surrounding air tem-
perature, and either the target temperature or the given
time.

2.2 Prediction of Equilibrium Times

The new method for prediction of the required time for the
center temperature to reach a given temperature can be summa-
rized as follows.

• Step 1: Measure the volume and surface area of the work-
piece, V and A; calculate the radius of the virtual sphere,

Table 1 Overall heat transfer coefficients for different types
of furnaces, from Ref 3

Furnaces W/m2 · °C

Lead 1200–1800
Salt baths 500–1200
Fluidized beds 500–700
Radiant fluidized beds (above 800°C) 200–300
Forced circulation furnaces 150–200
Radiant atmosphere furnaces (above 750°C) 120–220
Vacuum furnaces 120–200
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Rv; and calculate the thermal diffusivity, α, of the work-
piece material:

(Eq 1)

(Eq 2)

• Step 2: Calculate the dimensionless Biot number for the
virtual sphere:

(Eq 3)
Bi hR

k
v=

α ρ= k
c

R V Av = 3 /

• Step 3:Calculate the dimensionless thermal resistance pa-
rameter, C, by using equation Eq 4 or 5:

(Eq 4)

(Eq 5)

where a1 = 0.33309782, b1 = 0.078429524, c1 = 0.0051461563,
d1 = −0.00048676155, e1 = 2.3430387e − 05, f1 = −4.4135362e
− 07, a2 = 0.31934443, and b2 = 0.099154717. Equation 5 is ob-
viously simpler than Eq 4, but offers less accuracy.

• Step 4: Calculate the dimensionless temperature, θ, of the
workpiece at time, t:

(Eq 6)

• Step 5: Calculate the dimensionless Fourier number, Fo,
and obtain the required time t to reach the final temperature:

2.3 Prediction of Heating/Cooling Rates

The new method for prediction of the center temperature after a
given time t can be summarized as follows.

• Step 1:Measure the volume and surface area of the work-
piece, V and A; calculate the radius of the virtual sphere, Rv;
and calculate the thermal diffusivity, α:

(Eq 7)

(Eq 8)

• Step 2:Calculate the Biot number, Bi:

(Eq 9)

• Step 3: Calculate the thermal resistance parameter, C, by
using Eq 4 or 5.

• Step 4:Calculate the Fourier number, Fo:

(Eq 10)

• Step 5:Calculate the dimensionless temperature, θ, and the
temperature, T(t):

Note that steps 1 to 3 are the same as those in the prediction of
equilibration times.

2.4 Advantages and Disadvantages of the New Methods

The virtual sphere method allows the transient center tem-
perature of any complex geometry to be predicted for a given
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Fig. 1 Three blocks with (a) a corner cavity, (b) a surface cavity, and
(c) an interior cavity
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time or the required time to reach a target temperature to be pre-
dicted. The approximate solution for the center temperature of a
sphere further simplifies the virtual sphere method for engineer-
ing purposes. For clarity, the following notations of different vir-
tual sphere methods based on the approach of predicting sphere
center temperatures are introduced. Method 1 uses the approxi-
mate solution of a sphere (Eq 4). Method 2 uses the simple ap-
proximate solution of a sphere (Eq 5).

The conventional methods, that is, numerical methods, ana-
lytical methods, Heisler charts, and rules of thumb, were dis-
cussed briefly in the “Introduction.” Compared to these methods,
the new virtual sphere method has the following advantages.

• The input data are kept to a minimum. This ensures the sim-
plicity of the method.

• The method applies to workpieces of arbitrary geometry,
like the numerical methods.

• The method is simple and cost effective to use. It can be eas-
ily implemented in a computer program in just a few state-
ments. In fact, hand calculations are also possible with this
method, in particular, with method 2.

• The method offers much better accuracy than rules of thumb.

Just like any other methods, the virtual sphere method also has
disadvantages, as follows.

• The method is not capable of taking into account the tem-
perature dependence of physical properties.

• The heat transfer coefficient is assumed to be constant.
• The method can only predict the center temperatures, not

surface temperatures.
• When variable physical properties or variable heat trans-

fer coefficients need to be considered, numerical methods
can be used.

3. Examination of the Virtual Sphere Concept

The key ideas in the new proposed methods are as follows: (a)
a virtual sphere is assumed to represent the original complex
geometry, and the radius of the virtual sphere, Rv, is taken as 3V/A;
(b) the center temperature of the virtual sphere is assumed to be the
center temperature of the real solid body; and (c) the center tem-
perature of a sphere is calculated by a new approximate solution.
These ideas are explained and examined in the following section.

3.1 Lumped Heat Capacity Systems

The virtual sphere concept was developed for distributed
heat-capacity systems. To understand the virtual sphere concept,
the concept of the lumped heat-capacity system will be revisited.
If the heat transferred to a body is assumed to be instantaneously
and uniformly distributed throughout the body, a lumped heat-
capacity system is obtained. For lumped heat-capacity systems,
the temperature is uniform within the body, and the solid tem-
perature, T(t), at any time, t, can be obtained analytically as

(Eq 11)θ = −
− =∞

∞

− ×T t T
T T

e
i

Bi Fo( ) 3

where Ti is the initial temperature (°C). The Bi and Fo are two di-
mensionless numbers: the Biot number, hl/k,and the Fourier num-
ber, αt/l2, where l = 3V/A is a characteristic length and α = k/(ρc).

It should be mentioned that the present choice of the charac-
teristic length is slightly different from the conventional choice,
V/A, for a lumped heat-capacity system in some standard text
books, for example, Ref 4. The purpose of the current choice is
to ensure the radius will be the characteristic length of a solid
sphere, which is chosen to be the basic geometry in the present
virtual sphere method.

In casting engineering, the volume-to-surface area ratio is often
called the modulus.[5] The famous Chvorinov rule shows that the
freezing time of any solidifying body depends on its modulus.

Equation 11 shows that the heating or cooling rate in heat treat-
ment is also controlled by the modulus of the solid body. It should
be mentioned that the radius of the virtual sphere for a solid body
is three times its modulus. The physical meaning of the modulus
will be discussed later.

It is commonly accepted that the assumption of a lumped heat-
capacity system holds if the Biot number is less than 0.1. Equation
11 shows that ln (θ) is a linear function of the Fourier number if
the Biot number is a constant. This is a very important property
of lumped heat-capacity problems.

3.2 A Simple Approximate Solution for a Spherical Distributed
Heat-Capacity System

When the Biot number is larger than 0.1, the heat transfer
problem becomes a distributed heat-capacity system. By study-
ing the three Heisler charts, which apply to distributed heat-
capacity systems, it can be concluded for the center temperature
in a solid sphere, the temperature at the centerline of an infinitely
long cylinder, and the temperature at the midplane of an infinite
plate of finite thickness that ln (θ) is also an approximately lin-
ear function of the Fourier number for each constant Biot num-
ber. The slope of this linear relation is a nonlinear function of the
Biot number instead of the linear function of 3Bi in the lumped
heat-capacity system.

This linear property was used by Gao and Reid[2] to simplify
the exact analytical solution of the center temperature in the tran-
sient heat conduction of a solid sphere. The approximate solu-
tion has a form similar to Eq 11:

(Eq 12)

where C is a thermal resistance parameter. For a lumped heat-
capacity system, C = 3. For a distributed system, the thermal re-
sistance parameter is a function of the Biot number, as shown by
Gao and Reid. Two simple formulas were suggested and both
apply to a Biot number range between 0.01 and 20. These were
Eq 4 and 5. The R2 coefficients of determination are 0.999996
and 0.998483 for Eq 4 and 5, respectively.

When Bi ≤ 0.1, simply take C = 3 as the assumption that a
lumped heat-capacity is valid. Equation 5 slightly overpredicts
the C value when Bi < 1.

To evaluate the two simple polynomials, 40 different Biot
numbers chosen from the Heisler chart were considered with
2,000 Fourier numbers equally spaced from 0.1 to 200 for each
Biot number in a solid sphere. Figure 2 shows the predicted

θ = −
− =∞
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− ×T t T
T T

e
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Fig. 2 Dimensionless center temperature in a solid sphere of radius Rυ. The predictions by Eq. 4 (top) and 5 (bottom) are compared with the 
exact solution

center temperature distributions in a solid sphere by the two
different equations of the thermal resistance parameter. Fig-
ure 2 is a simple Heisler chart for the sphere center tempera-
ture. Figure 2 only plots some representative data for some
larger Biot numbers. The accuracy for Biot numbers smaller
than 0.1 is much better than those presented in the figures.
Table 2 summarizes the maximum, average, and root-mean-
square errors for each model. The accuracy shown in Table 2
is considered to be sufficient for engineering heat treatment
purposes.

3.3 The Concept of the Virtual Sphere

It should be mentioned that the center of a solid body can be
defined easily for simple geometries, but it is difficult to define
for complex geometries. The essential idea is that a virtual
sphere is assumed to represent the original complex geometry,
and the radius of the virtual sphere, Rv, is taken as 3V/A.Table 3
lists the radius of the virtual sphere for some typical geometries
shown in Fig. 3.

The center temperature of the virtual sphere is assumed to
be the center temperature of the real solid body. This idea was
first formulated by examining the similarity in the Heisler charts
for the center temperatures of an infinite plate of finite thickness
(2L), a solid sphere (radius R), and a long cylinder (radius R). All
three geometries are very different from each other, but exhibit
similar center temperatures in the Heisler charts. For a constant
Biot number, the dimensionless temperature is approximately
a linear function of the Fourier number. If a consistent defini-
tion of the characteristic length is chosen for each geometry,
3L/2 for the infinite plate, R for the sphere, and 1.5 R for the

Table 2 Summary of errors of predicted dimensionless
center temperatures in a solid sphere

Model Maximum Average Root-mean-square

Eq 4 0.322 5.88e-4 4.50e-3
Eq 5 0.338 6.56e-4 4.75e-3



Journal of Materials Engineering and Performance Volume 9(1) February 2000—67

long cylinder, it can be seen immediately that the three Heisler
charts become almost identical in the practical Biot number
range between 0 and 20 if the previously given definition of the
characteristic length is used. The relative difference in Fourier
prediction when θ = 0.001 is 8% at Bi = 1. It increases to 45% at
Bi = 10, 50% at Bi = 20, and 60% at infinite Biot number. There
is almost no difference for a Biot number less than 0.1, which
is a lumped heat-capacity system.

This is a promising similarity because the three geometries
are very different from each other. If the sphere is taken as a

basic geometry for comparison, the long cylinder and the infinite
plate could be considered to be very nonspherical. The similar-
ity in the center temperature histories for these three very differ-
ent geometries suggests that the center temperature history for
one geometry (e.g., long cylinder) can be predicted from the
Heisler chart of another geometry (e.g.,sphere).

In fact, if the infinite plate is chosen as the basic geometry,
then a virtual infinite plate can be assumed to represent the orig-
inal complex geometry, and the half-thickness of the virtual infi-
nite plate is taken as V/A. This is the physical meaning of the
modulus used in casting engineering mentioned earlier. How-
ever, because a real sphere provides the minimum surface area,
which gives less heat transfer capacity, the equilibration time
calculated by the virtual sphere method based on the solution for
a sphere is the most conservative value. Thus, the sphere is cho-
sen as the basic geometry in the present method. At the same time,
the sphere is a finite geometry, while the infinite plate is some-
what imaginary. This means that if a constant volume of a work-
piece is provided, a sphere can be created, but not an infinite plate
in practical situations.

This is the basis for the assumption that the center tempera-
ture of the virtual sphere is approximately that of an arbitrary
solid body for the practical Biot number range between 0 and 20.
The physical meaning of the virtual sphere can be easily under-
stood by examining the definition of its radius.

When a spherical workpiece evolves into another geometry
of the same volume, its surface area increases and the radius of
the virtual sphere decreases. Under the same heat transfer con-
ditions, a reduction in the radius of the virtual sphere means a
decrease in equilibration times. This is due to an increase of the
heat transfer surface area.

Thus, only the center temperature solution for a solid sphere
is needed for determining the equilibration times. This solution
is available in an exact form, but requires numerical methods
to compute. The Heisler chart for a sphere can also be used.
The approximate solutions presented earlier are used in the
present method.

4. Evaluation I: Exact Solutions

The following three examples are the modified versions 
of the example problems from the textbook by Kakac and
Yener.[4] They can also be solved by using the Heisler charts.
The shapes of the workpieces in these examples are very non-
spherical, and thus, they can serve as critical test cases for the
new methods.

In example 1, a steel cylinder, 20 cm in diameter and 2 m in
length, heated initially to a temperature of 500 °C, was suddenly
immersed in an oil bath maintained at 20 °C. For the following
conditions, calculate the time required for the center temperature
of the steel cylinder to reach 20.5 °C: ρ = 7,700 kg/m3, c = 500
J/kg · °C, k = 41 W/m · °C, and h = 1,200 W/m2 · °C.

Table 4 summarizes the solutions with different methods. It
should be mentioned that in the Heisler chart method, the radius
of the cylinder is used as the characteristic length, and in meth-
ods 1 and 2, the radius of the virtual sphere is used as the char-
acteristic length. The largest error is about 21% for a rather high
Biot number (>>0.1) with method 2.

Table 3 The radius of the virtual sphere for some typical
geometries

Geometry Radius of the virtual sphere

Sphere R
Short cylinder 3R(2R/H+ 2)−1

Long cylinder 1.5R
Rectangular prism (3WHL)/[2(HL + HW+ WL)]
Cube 0.5L
Long square 3L/4
Long rectangle (L × 2L) L
Infinite plate 3L/2

(a) (e)

(f)

(g)

(h)

(b)

(c)

(d)

Fig. 3 Some typical geometries: (a)sphere, (b) short cylinder, (c) long
cylinder, (d) rectangular prism, (e) cube, (f) long square, (g) long rec-
tangle (L × 2L), and (h) infinite plate
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In example 2, a 60 cm (2L) thick plane wall at a uniform tem-
perature of 21 °C was suddenly exposed on both sides to a hot
gas stream at 577 °C. For the following conditions, calculate the
temperature at the midplane after 27 h of heating: ρ = 2,600 kg/m3,
c = 1,256 J/kg · °C, k = 15.5 W/m · °C, and h = 10 W/m2 · °C.

Again, Table 4 summarizes the solutions. In calculating the
radius of the virtual sphere, only the surface area of each side of
the plane wall is considered because the workpiece is very large.
In the Heisler chart method, the half-thickness is used as the
characteristic length. The largest error (about 3%) occurs in
method 1 for a Biot number of about 0.6.

Example 3 was a steel cylinder 50 cm in diameter and 50 cm
long, initially heated at a uniform temperature of 24 °C, and then
placed in a furnace maintained at 930 °C. Estimate the time 
required for the center temperature to reach 929°C under the
following conditions: ρ = 7,700 kg/m3, c = 500 J/kg · °C, k =
41 W/m · °C, and h = 90 W/m2 · °C. Table 4 lists the solutions.
This example differs from the other two examples because there
is no Heisler chart available for a short cylinder. Here, the two-
dimensional temperature distribution in the cylinder is obtained
by the Heisler charts of an infinite plate and cylinder. In the in-
finite plate and cylinder cases, characteristic lengths are the radius
and the half-thickness, respectively, which happens to be the same
for this problem, that is, 0.25 m, which means that the resulting
Fourier numbers should also be the same.

It can be shown that the θshort cylinder= θlong cylinder× θinfinite plate.[4]

By trial and error, from the Heisler charts, it was found that if Fo
= 5.0, θlong cylinder= 0.01 and θinfinite plate= 0.1, which satisfy the value

of θ for the present problem. From the Fourier number, it was fi-
nally found the required time is 29,344 s, which agrees well with
the predicted results by the proposed virtual sphere concepts.

It should be mentioned that the percentage deviation used in
the previous comparisons was for general purposes only. Differ-
ent Biot numbers were tested. A small error in example 2 com-
pared to those in examples 1 and 3 is mainly due to a smaller Biot
number in example 2. Based on these results, conclusions should
not be simply drawn that the method is not very suitable for long
cylinders, but suitable for plates.

The previous three examples show that the virtual sphere ap-
proach can be successfully applied to geometries that are far from
that of a sphere. The new methods are much simpler than any ex-
isting method, except those using rules of thumb, which are not
accurate and generally applicable.

5. Evaluation II: Experimental Data

The developed method was further demonstrated via a prac-
tical example where measured temperature variation profiles
were available.

For example 4, when investigating the distortion of H13 dies
heated in fluidized bed furnaces, Killian[6] recorded experimen-
tally the temperature variation of two identical H13 steel blocks
during both heating and cooling in a heat treatment cycle. The
two H13 dies were heated in two furnaces, a fluidized bed and a
vacuum furnace with a subatmospheric quench, that is, 700 torr
of nitrogen with a 50 horsepower gas recirculation fan. Six ther-
mocouples were placed in various positions on each of the two
dies. Figure 4 shows the shape of the die. The block had an over-
all dimension of 300 by 300 by 150 mm. A cavity was machined
at the center of one side of the block. The dimension of the cav-
ity was 160 by 160 by 50 mm. A second smaller cavity was ma-
chined at the bottom of the larger cavity, which had a dimension
of 75 by 75 by 15 mm.

Figure 5 shows the measured heating and cooling curves for
both dies. It should be mentioned that the heat treatment cycles

Table 4 Summary of the solutions for the three examples
using three different methods

Parameters Example 1 Example 2 Example 3

Basic α = k/ρc (m2/s) 1.065e-5 4.746e-6 1.065e-5
data Rυ = 3V/A (m) 0.149 0.9 0.25

Bi = hRυ /k 4.361 0.581 0.549
θ = (Tgiven− T∞) 0.0001 . . . 0.001

/(Ti − T∞)
Fo − αt/R2

υ . . . 0.570 . . .
Method 1 C from Eq 4 1.351 2.630 2.648

Fo = −ln (θ)/CBi 1.173 . . . 4.753
t = FoR2

υ/α (s) 2,445 . . . 27,895
θ = e(−CBi × Fo) . . . 0.419 . . .
T = θ (Ti − T∞) . . . 344 . . .

+ T∞ (°C)
Method 2 C from Eq 5 1.330 2.630 2.676

Fo = ln (θ) CBi 1.191 . . . 4.705
t = FoR2

υ/α (s) 2,482 . . . 27,611
θ = e(−CBi × Fo) . . . 0.416 . . .
T = θ (Ti − T∞) . . . 346 . . .

+ T∞ (°C)
Heisler Bi = hRυ /k 2.93 0.194 0.549

chart Fo (obtained 2.15 . . . 5.0
from H chart)

Fo = αt/L2 . . . 5.126 . . .
t = For2

0/α (s) 2,046 . . . 29,344
θ (obtained . . . 0.4 . . .

from H chart)
T = θ (Ti − T∞ ) . . . 355 . . .

+ T (°C)

The solutions obtained with methods 1 and 2 are compared with those ob-
tained by the Heisler charts (H charts).

Fig. 4 The H13 die used in the experiment of Killian[5]
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for both dies were slightly different. There was no step quench
1 at 400 °C with the vacuum furnace cycle. The problem was to
predict the heating and cooling curves for both dies.

For the solution of this realistic case, the practical problems
of temperature-dependent thermal properties and heat transfer

coefficients were faced. The following constant physical prop-
erties were assumed: ρ = 7,724 kg/m3, c = 622 J/kg · °C, and k =
28.5 W/m · °C.

With regard to heat transfer coefficients, it is obvious that for
different stages of heat treatment, they are different. Without

Fig. 5 Measured heating and cooling curves for an H13 die in the vacuum furnace (top) and in the fluidized bed furnace (bottom)
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detailed information, a constant heat transfer coefficient was
assumed, which is obtained from Table 1. For the fluidized bed
furnace, the value was taken as 500 W/m2 · °C, and for the vac-
uum furnace, 120 W/m2 · °C. To demonstrate the sensitivity of the
heat transfer coefficients, another set of heat transfer coefficients
was also considered, 350 W/m2 · °C for the fluidized bed furnace
and 200 W/m2 · °C for the vacuum furnace.

In simulating the heat treatment cycles, the center tempera-
ture of the virtual sphere was calculated at different times. At
the end of each stage (that is, first preheat, second preheat,
harden temperature, and step quench 1), the initial temperature
of the new stage was simply taken as the final center tempera-
ture of the previous stage. This is true if the previous stage
reaches equilibrium status.

The diameter of the virtual sphere was calculated as 0.092 m,
and the Biot number considered ranged from 0.37 to 1.54. These
Biot numbers indicated that the system cannot be considered as
a lumped heat-capacity system. Figure 6 shows the predicted
heating and cooling curves. In these predictions, the total time
interval of 540 min was divided into 2,000 intervals.

It can be seen that the differences between heating and cool-
ing rates in the two furnaces were well predicted. Although it is
hard to find a corresponding location in the real die that has the
same temperature as the center of the virtual sphere, it seems that
locations of thermocouples T/c.1 and T/c.2, which are deep in

the samples, may be a good assumption. The present method
cannot predict the surface temperatures.

For the first and second preheating stages, the predicted
curves indicate that the dies reach their equilibrium while the
measured curves indicate the opposite. This shows that the
heat transfer coefficients used in the prediction are too high for
these two stages. The same conclusions also apply to the cool-
ing curves. The results indicate that an accurate characteriza-
tion of the heating and cooling processes in a furnace is very
important. However, it is quite often very difficult. Accurate
engineering prediction models are required to determine the
overall heat transfer coefficients, based on furnace operating
parameters. The overall heat transfer coefficients are neces-
sary inputs for the present method and any other numerical
methods.

Heat transfer coefficients can vary at different stages of
heating and cooling, for example, as in the experiments of Kil-
lian.[6] Figure 6 shows a fine tuned prediction. Some very un-
realistic h values were used. It was noticed that in the vacuum
furnace case, the experiment showed that there was a very high
gradient in the workpiece, indicating a high heat conduction
rate in the workpiece and a high convective heat transfer rate
at surfaces. However, a very small heat transfer coefficient
was suggested by a fine tuning simulation in Fig. 6. This may
suggest that some characteristic of the furnace may not have
been documented by Killian and, thus, may not have been con-
sidered here.

6. Conclusions

A practical engineering method has been presented and
evaluated in this paper to estimate the equilibration times and
the heating/cooling rates for heat treatment. The two most im-
portant components in this new approach are the virtual sphere
concept of representing any geometry and two new simple ap-
proximate solutions for the center temperature of a solid sphere.
The methods developed in this paper were evaluated against the
exact solutions of some regular geometries, which are far from
that of a sphere and an experimentally measured temperature
profile of realistic dies in a heat treatment cycle. The analytical
tests show that the largest error in estimating equilibration
times in a range of Biot numbers between 0.1 and 5 is about
20% for very nonspherical geometries. A fairly good agreement
is obtained between the results predicted by the new virtual
sphere method and the measurement. The new method is capa-
ble of treating any arbitrary geometry in a rather simple man-
ner. Before the virtual sphere method is recommended for
engineering applications, reliable engineering prediction meth-
ods for determining the heat transfer coefficients in different
furnaces are needed.
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